Сотрудники кафедры физики твердого тела и наносистем (№ 70) НИЯУ МИФИ к.ф.-м.н., доцент Андрей Красавин и к.ф.-м.н. Вячеслав Неверов в составе международного научного коллектива предложили новый подход к детектированию майорановских нулевых мод – уникальных квазичастиц, которые считаются перспективными кандидатами на роль кубитов в квантовых компьютерах. В работе, опубликованной в высокорейтинговом журнале Research ученые теоретически доказали, что добавление немагнитных примесей в сверхпроводник не мешает, а, наоборот, помогает обнаружить эти квазичастицы.

Так нейросеть Гигачат видит майорановские нулевые моды
Майорановские нулевые моды – это особые состояния, возникающие внутри вихрей в топологических сверхпроводниках. Они привлекают пристальное внимание исследователей по всему миру благодаря своей топологической защищенности: информация, закодированная в таких состояниях, устойчива к локальным возмущениям. Это свойство делает их идеальными «строительными блоками» для организации отказоустойчивых квантовых вычислений.
Однако обнаружение этих квазичастиц на практике сопряжено с серьезными трудностями. В вихре, помимо самой майорановской моды, находящейся строго на нулевом уровне энергии, существует множество обычных возбуждений с конечными энергиями – так называемых состояний Кароли-де Жена-Матрикона. Энергетический зазор между ними ничтожно мал, из-за чего в эксперименте их сигналы сливаются. Чтобы решить эту проблему, научное сообщество традиционно искало экзотические материалы с особым соотношением физических параметров (большой сверхпроводящей щелью и малой энергией Ферми), например, сверхпроводники на основе железа. Но такие материалы часто содержат магнитные дефекты, которые серьезно искажают результаты измерений.
Ученые предложили контринтуитивное решение: использовать обычные сверхпроводники, но намеренно вводить в них немагнитные примеси. Используя компьютерное моделирование на основе микроскопического подхода Боголюбова-де Жена, сотрудники кафедры ФТТиН совместно с коллегами продемонстрировали, что такие примеси действуют как своеобразный энергетический фильтр.

Андрей Красавин
«Наши результаты опровергают распространенное мнение о том, что для обнаружения майорановских мод требуются идеально чистые материалы с экстремальными характеристиками. Мы показали, что немагнитная примесь, на которой может закрепляться вихрь, не затрагивает саму майорановскую моду благодаря ее топологической защищенности, но «расталкивает» остальные, паразитные энергетические состояния», поясняет Андрей Красавин.
Это объясняется разной природой связанных состояний: майорановская мода устойчива к локальному потенциалу примеси, тогда как обычные состояния чувствительны к беспорядку, и их уровни энергии смещаются. В результате энергетический зазор между полезным сигналом и шумом увеличивается, позволяя зафиксировать пик плотности состояний, соответствующий искомой квазичастице. Об устойчивости эффекта свидетельствуют расчеты для различных параметров потенциала примеси: при увеличении силы потенциала «обычные» уровни монотонно удаляются от центра запрещенной зоны, оставляя майорановскую нулевую моду в гордом одиночестве.

Михаил Маслов
Значимость полученных результатов для развития квантовых технологий в университете прокомментировал заведующий кафедрой физики твердого тела и наносистем НИЯУ МИФИ, доктор физ.-мат. наук Михаил Маслов: «На нашей кафедре исторически сложилась сильная школа как теоретической, так и экспериментальной физики сверхпроводимости. Наши сотрудники регулярно получают результаты мирового уровня, и мы продолжаем развивать эту область как одно из ключевых научных направлений. Данная работа имеет принципиальное значение, поскольку открывает путь к использованию более доступных материалов в квантовых вычислениях. Создание кубитов становится возможным на основе гибридных структур из обычных s-волновых сверхпроводников с помощью современных нанотехнологических подходов для формирования искусственных центров пиннинга».
