В данном разделе представлены Избранные публикации Научного Центра Нано-Фотон за последние 5 лет (из общего числа в 150 публикаций за этот период)
67. Biny, L., Gerasimovich, E., Karaulov, A., Sukhanova, A., Nabiev, I. (2024) Functionalized calcium carbonate-based microparticles as a versatile tool for targeted drug delivery and cancer treatment. Pharmaceutics, 16, 653. IF=6.525 | Q1.
66. Olejniczak, A., Lawera, Z., Zapata-Herrera, M., Chuvilin, A., Samokhvalov, P., Nabiev, I., Grzelczak, M., Rakovich, Yu., Krivenkov, V. (2024) On-demand reversible switching of the emission mode of individual semiconductor quantum emitters using plasmonic metasurfaces. APL Photonics, 9 (1), 016107. IF=3.971 | Q1.
66. Gulevich, D., Nabiev, I., Samokhvalov, P. (2024) Machine learning–assisted colloidal synthesis: A review. Materials Today Chemistry, 35, 101837. IF=7.613 | Q1.
65. Nifontova, G., Charlier, C., Ayadi, N., Fleury, F., Karaulov, A., Sukhanova, A., Nabiev, I. (2024) Photonic crystal surface mode real-time imaging of RAD51 DNA repair protein interaction with the ssDNA substrate. Biosensors, 14 (1), 43. IF=5.743 | Q2.
64. Nifontova, G.O., Nabiev, I.R. (2023) A microfluidic platform based on one-dimensional photonic crystals for label-free optical detection of oligonucleotides. Optika i Spektroscopiya [Optics and Spectroscopy], 131 (11), 1601–1605[in Russian].
63. Knysh, A.A., Gerasimovich, E.S., Samokhvalov, P.S., Sukhanova, A.V., Nabiev, I.R. (2023) Resonance energy transfer in hydrogels based on quantum dots and recognizing antibodies: A prototype nanophotonic immunodiagnostic system. Optika i Spektroscopiya [Optics and Spectroscopy], 131 (10), 1412–1417 [in Russian].
62. Knysh, A.A., Gulevich, D.G., Nabiev, I.R., Samokhvalov, P.S. (2023) Temporal stability of the optical characteristics of thin films based on CsPbBr3 perovskite nanocrystals and the p(MMA–LMA) copolymer. Optika i Spektroscopiya [Optics and Spectroscopy], 131 (9), 1268–1273 [in Russian].
61. Samokhvalov, P.S., Karaulov, A.V., Nabiev, I.R. (2023) Control of the photoluminescence lifetime of quantum dots by engineering their shell structure. Optika i Spektroscopiya [Optics and Spectroscopy], 131 (9), 1262–1267 [in Russian].
60. Nabiev, I.R., Baryshnikova, M.A., Sokolova, Z.A., Sokolov, P.M., Karaulov, A.V. (2023) Multiparametric immunohistochemical analysis in cancer diagnosis (literary review). Russian Journal of Biotherapy, 22 (4),10–16.
59. Sarychev, A.K., Ivanov, A.V., Bykov, I.V., Bakholdin, N.V., Mochalov, K.E., Shestopalova, M.S., Oleinikov, V.A., Gushchin, V.A., Nabiev, I.R., Sukhanova, A.V. (2023) Planar SERS sensors for SARS-CoV-2 virus detection. In: 2023 Days on Diffraction (DD), IEEE Xplore, 1–4.
58. Granizo, E., Kriukova, I., Samokhvalov, P., Nabiev, I. (2023) Enhancement of quantum dot fluorescence by a metal nanoparticle/porous silicon microcavity hybrid system. EPJ Web of Conferences, 287, 04032.
57. Nifontova, G., Gerasimovich, E., Fleury, F., Sukhanova, A., Nabiev, I. (2023) Photonic crystal surface mode imaging for multiplexed real-time detection of antibodies, oligonucleotides, and DNA repair proteins. EPJ Web of Conferences, 287, 03007.
56. Nifontova, G., Kalenichenko, D., Kriukova, I., Terryn, C., Audonnet, S., Karaulov, A., Nabiev, I., Sukhanova, A. (2023) Impact of macrophages on the interaction of cetuximab-functionalized polyelectrolyte capsules with EGFR-expressing cancer cells. ACS Applied Materials & Interfaces, 15 (45), 52137–52149. IF=10.383 | Q1.
55. Knysh, A., Sokolov, P., Nabiev, I. (2023). Dynamic light scattering analysis in biomedical research and applications of nanoparticles and polymers. Journal of Biomedical Photonics & Engineering, 9 (2), 020203. IF=1.02.
54. Sokolov, P.M., Karaulov, A.V., Sukhanova, A.V., Nabiev, I.R. (2023) Tumor microenvironment biomarkers in breast cancer. Russian Journal of Biotherapy, 22 (1), 19–27.
53. Nifontova G.O., Kalenichenko D.V., Baryshnikova M.A., Sokolova, Z.A., Samokhvalov, P.S., Karaulov, A.V., Sukhanova, A.V., Nabiev, I.R. (2023) Nanoprobes based on fluorescent semiconductor nanocrystals and single-domain antibodies for highly sensitive detection of epidermal growth factor receptor in tumor cells. Russian Journal of Biotherapy, 22 (1), 68–75.
52. Gulevich, D.G., Tkach, A.A., Nabiev, I.R., Krivenkov, V.A., Samokhvalov, P.S. (2023) Tuning the luminescence of thin nanocrystalline CsPbBr3 perovskite films during the in situ anion exchange reaction. Technical Physics, 68 (2), 241–247.
51. Sokolov, P., Samokhvalov, P., Sukhanova, A., Nabiev, I. (2023). Biosensors based on inorganic composite fluorescent hydrogels. Nanomaterials, 13 (11), 1748. IF=5.719 | Q1.
50. Kryukova, I.S., Granizo, E.A., Samokhvalov, P.S., Nabiev, I.R., Krivenkov, V.A. (2023) Hierarchical plasmon-optical cavities based on porous silicon photonic crystals for light-matter coupling with quantum emitters. Metamaterials XIV, Proceedings of SPIE, 12568, 1256816.
49. Sokolov, P., Nifontova, G., Samokhvalov, P., Karaulov, A., Sukhanova, A., Nabiev, I. (2023) Nontoxic fluorescent nanoprobes for multiplexed detection and 3D imaging of tumor markers in breast cancer. Pharmaceutics, 15 (3), 946. IF=6.525 | Q1.
48. Nifontova, G., Petrova, I., Gerasimovich, E., Konopsky, V..N, Ayadi, N., Charlier, C., Fleury, F., Karaulov, A., Sukhanova, A., Nabiev, I. (2023) Label-free multiplexed microfluidic analysis of protein interactions based on photonic crystal surface mode imaging. International Journal of Molecular Sciences, 24 (5), 4347. IF=6.208 | Q1.
47. Yamina, A., Nabiev, I. (2022). Porous InGaN-based metal-semiconductor-metal: Morphology and optical studies. Experimental and Theoretical NANOTECHNOLOGY, 6 (1), 1–5.
46. Nifontova, G., Fleury, F., Nabiev, I., Sukhanova, A. (2022). Label-free multiplexed analysis using photonic crystal-based biosensors. Journal of Physics: Conference Series, 2407 (1), 012031.
45. Knysh, A., Tkach, A., Gulevich, D., Nabiev, I., Samokhvalov, P. (2022) Optimization of CsPbBr3 perovskite-based composite thin film fabrication processes for use in new-generation light emission diodes and photodetectors. Physics of Atomic Nuclei, 85, 1619–1624.
44. Martins, J.R., Krivenkov, V., Bernardo, C.R., Samokhvalov, P., Nabiev, I., Rakovich, Y.P., Vasilevskiy, M.I. (2022) Statistical analysis of photoluminescence decay kinetics in quantum dot ensembles: effects of inorganic shell composition and environment. Journal of Physical Chemistry C, 126 (48), 20480–20490. IF=4.177 | Q1.
43. Nifontova, G., Tsoi, T., Karaulov, A., Nabiev, I., Sukhanova, A. (2022) Structure–function relationships in polymeric multilayer capsules designed for cancer drug delivery. Biomaterials Science, 10 (18), 5092–5115. IF=7.59 | Q1.
42. Sukhanova, A., Bozrova, S., Gerasimovich, E., Baryshnikova, M., Sokolova, Z., Samokhvalov, P., Guhrenz, C., Gaponik, N., Karaulov, A., Nabiev, I. (2022) Dependence of quantum dot toxicity in vitro on their size, chemical composition, and surface charge. Nanomaterials, 12 (16), 2734 IF=5.719 | Q1.
41. Krivenkov, V., Samokhvalov, P., Martynov, I.L., Rakovich, Yu., Nabiev, I. (2022) A nano-hybrid plasmon-exciton material with an enhanced biexciton emission increases the efficiency of the photodetector at high excitation intensities. Optical Components and Materials XIX, Proceedings of SPIE, 11997, 119970Q.
40. Samokhvalov, P., Gulevich, D., Krivenkov, V., Vasil'evskii, I.S., Kargin, N.I., Nabiev, I. (2022) Nonlinear plasmon-exciton infrared photodetector operating in the two-photon absorption mode. Quantum Sensing and Nano Electronics and Photonics XVIII, Proceedings of SPIE, 12009, 120090N.
39. Tkach, A.A., Alexandrov, A.E., Saunina, A.Y., Lypenko, D.A., Nikitenko, V.R., Nabiev, I.R., Samokhvalov, P.S. (2022) Increasing the brightness and efficiency of quantum dot light-emitting diodes by optimizing the PMMA electron-blocking layer. Nanophotonics IX, Proceedings of SPIE, 12131, 1213110.
38. Krivenkov, V.A., Samokhvalov, P., Vasil’evskii, I.S., Sánchez-Iglesias, A., Grzelczak, M., Rakovich, Yu., Kargin, N.I., Nabiev, I. (2022) Nonlinear two-quantum energy transfer from plasmons to excitons extends the applications of quantum dots in optoelectronics. Nanophotonics IX, Proceedings of SPIE, PC12131, PC121310D.
37. Sarychev, A.K., Sukhanova, A., Ivanov, A.V., Bykov, I.V., Bakholdin, N.V., Vasina, D.V., Gushchin, V.A., Tkachuk, A.P., Nifontova, G., Samokhvalov, P.S., Karaulov, A., Nabiev, I. (2022) Label-free detection of the receptor-binding domain of the SARS-CoV-2 spike glycoprotein at physiologically relevant concentrations using surface-enhanced Raman spectroscopy. Biosensors, 12 (5), 300. IF=5.743 | Q2.
36. Melnikau, D., Samokhvalov, P., Sánchez-Iglesias, A., Grzelczak, M., Nabiev, I., Rakovich, Yu.P. (2022) Strong coupling effects in a plexciton system of gold nanostars and J-aggregates. Journal of Luminescence, 242, 118557. IF=4.171 | Q2.
35. Kriukova, I., Samokhvalov, P., Nabiev, I. (2021) Near-infrared photoluminescent hybrid structures based on freestanding porous silicon photonic crystals and PbS quantum dots. Applied Nanoscience, 12, 3315–3320. IF=3.869 | Q2.
34. Krivenkov, V.A., Samokhvalov, P., Vasil’evskii, I., Kargin, N.I., Nabiev, I. (2021) Plasmon–exciton interaction strongly increases the efficiency of a quantum dot–based near-infrared photodetector operating in the two-photon absorption mode under normal conditions. Nanoscale, 13, 19929–19935. IF=8.307 | Q1.
33. Zvaigzne, M., Samokhvalov, P., Gun’ko, Yu., Nabiev, I. (2021) Anisotropic nanomaterials for asymmetric synthesis. Nanoscale, 13, 20354-20373. IF=8.307 | Q1.
32. Sukhanova, A., Ramos-Gomes, F., Chames, P., Sokolov, P., Baty, D., Alves, F., Nabiev, I. (2021) Multiphoton deep-tissue imaging of micrometastases and disseminated cancer cells using conjugates of quantum dots and single-domain antibodies. In: Zamir. E., ed., Multiplexed Imaging: Methods and Protocols (Methods in Molecular Biology, 2350). New York, NY: Humana Press, pp. 105–123.
31. Nabiev, I. (2021) Strong light-matter coupling for optical switching through the fluorescence and FRET control. Journal of Physics: Conference Series, 2058, 012001.
30. Granizo, E.A., Nabiev, I., Krivenkov, V. (2021) A numerical study of plasmon-induced enhancement of dipole emission by arrays of silver nanospheres and nanoprisms. Journal of Physics: Conference Series, 2058, 012005.
29. Kalenichenko, D., Nifontova, G., Sukhanova, A., Nabiev, I. (2021) Design and characterisation of calcium carbonate microspheres for anticancer drug delivery. Journal of Physics: Conference Series, 2058, 012009.
28. Mochalov, K., Samokhvalov, P., Nifontova, G., Tsoi, T., Sukhanova, A., Nabiev, I. (2021) Surface-enhanced Raman scattering of CoV-SARS-2 viral proteins in a strong coupling regime. Journal of Physics: Conference Series, 2058, 012020.
27. Kalenichenko, D., Nifontova, G., Karaulov, A., Sukhanova, A., Nabiev, I. (2021) Designing functionalized polyelectrolyte microcapsules for cancer treatment. Nanomaterials, 11 (11), 3055 IF=5.719 | Q1.
26. Nifontova, G., Krivenkov, V., Zvaigzne, M., Efimov, A., Korostylev, E., Zarubin, S., Karaulov, A., Nabiev, I., Sukhanova, A. (2021) Nanoparticle-doped hybrid polyelectrolyte microcapsules with controlled photoluminescence for bioimaging applications. Polymers, 13 (23), 4076. IF=4.967 | Q1.
25. Zvaigzne, M., Alexandrov, A., Tkach, A., Lypenko, D., Nabiev, I., Samokhvalov, P. (2021) Optimizing the PMMA electron-blocking layer of quantum dot light-emitting diodes. Nanomaterials, 11 (8), 2014. IF= 5.719 | Q1.
24. Dovzhenko, D., Lednev, M., Mochalov, K., Vaskan, I., Rakovich, Yu., Karaulov, A., Nabiev, I. (2021) Polariton-assisted manipulation of energy relaxation pathways: donor–acceptor role reversal in a tuneable microcavity. Chemical Science, 12, 12794–12805. IF=9.969 | Q1.
23. Linkov, P., Samokhvalov, P., Baryshnikova, M., Laronze-Cochard, M., Sapi, J., Karaulov, A., Nabiev, I. (2021) Conjugates of ultrasmall quantum dots and acridine derivatives as prospective nanoprobes for intracellular investigations. Nanomaterials, 11 (9), 2160. IF=5.719 | Q1.
22. Dovzhenko, D., Lednev, M., Mochalov, K., Vaskan, I., Samokhvalov, P., Rakovich, Yu., Nabiev, I. (2021) Strong exciton−photon coupling with colloidal quantum dots in a tuneable microcavity. Applied Physics Letters, 119 (1), 011102. IF=3.971 | Q1.
21. Krivenkov, V., Dovzhenko, D., Kriukova, I., Samokhvalov, P., Saanchez-Iglesias, A., Grzelczak, M., Nabiev, I., Rakovich, Y. (2021) Cavity-enhanced photoluminescence of semiconductor quantum dot thin films under two-photon excitation. In: A. Adibi, S.-Y. Lin, A. Scherer, eds. Photonic and Phononic Properties of Engineered Nanostructures XI, Proceedings of SPIE, 11694, 116940W.
20. Krivenkov, V., Samokhvalov, P., Nabiev, I., Rakovich, Y. (2021) Quantum dot-based plasmon-exciton emitters with improved one-and two-photon emission properties. In: A. Adibi, S.-Y. Lin, A. Scherer, eds. Photonic and Phononic Properties of Engineered Nanostructures XI, Proceedings of SPIE, 11694, 116941Q.
19. Krivenkov, V.A., Samokhvalov, P., Sánchez-Iglesias, A., Grzelczak, M., Nabiev, I., Rakovich, Y. (2021) Strong increase in the effective two-photon absorption cross-section of excitons in quantum dots due to the nonlinear interaction with localized plasmons in gold nanorods. Nanoscale, 13 (8), 4614–4623. IF=8.307 | Q1.
18. Krivenkov, V.A., Samokhvalov, P., Nabiev, I., Rakovich, Y.P. (2021) pH-Sensing platform based on light−matter coupling in colloidal complexes of silver nanoplates and J-aggregates. Journal of Physical Chemistry C, 125 (3), 1972–1979. IF=4.177 | Q1.
17. Linkov, P., Samokhvalov, P., Grokhovsky, S., Laronze-Cochard, M., Sapi, J., Nabiev, I. (2020) Selection of optimal chromatography medium for purification of quantum dots and their bioconjugates. Chemistry of Materials, 32 (21), 9078–9089. IF=10.508 | Q1.
16. Dovzhenko, D.S., Krivenkov, V.A., Kriukova, I.S., Samokhvalov, P.S., Karaulov, A.V., Nabiev, I.R. (2020) Enhanced spontaneous emission from two-photon-pumped quantum dots in a porous silicon microcavity. Optics Letters, 45 (19), 5364–5367. IF=3.56 | Q1.
15. Kriukova, I.S., Krivenkov, V.A., Samokhvalov, P.S., Nabiev, I.R. (2020) Weak coupling between light and matter in photonic crystals based on porous silicon responsible for the enhancement of fluorescence of quantum dots under two-photon excitation. JETP Letters, 112 (9), 537–542. IF=1.4.
14. Krivenkov, V., Samokhvalov, P., Nabiev, I., Rakovich, Yu. (2020) Synergy of excitation enhancement and the Purcell effect for strong photoluminescence enhancement in a thin-film hybrid structure based on quantum dots and plasmon nanoparticles. Journal of Physical Chemistry Letters, 11 (19), 8018–8025. IF=6.888 | Q1.
13. Dovzhenko, D., Martynov, I., Samokhvalov, P., Osipov, E., Lednev, M., Chistyakov, A., Karaulov, A., Nabiev, I. (2020) Enhancement of spontaneous emission of semiconductor quantum dots inside one-dimensional porous silicon photonic crystals. Optics Express, 28 (15), 22705–22717. IF=3.833 | Q1.
12. Nifontova, G., Krivenkov, V., Zvaigzne, M., Samokhvalov, P., Efimov, A.E., Agapova, O.I., Agapov, I.I., Korostylev, E., Zarubin, S., Karaulov, A., Nabiev, I., Sukhanova, A. (2020) Controlling charge transfer from quantum dots to polyelectrolyte layers extends prospective applications of magneto-optical microcapsules. ACS Applied Materials & Interfaces,12 (32), 35882–35894. IF=10.383 | Q1.
11. Krivenkov, V., Dyagileva, D., Samokhvalov, P., Nabiev, I., Rakovich, Yu. (2020) Effect of spectral overlap and separation distance on exciton and biexciton quantum yields and radiative and nonradiative recombination rates in quantum dots near plasmon nanoparticles. Annalen der Physik, 2000236. IF=3.047 | Q2.
10. Dyagileva, D., Krivenkov, V., Samokhvalov, P., Nabiev, I., Rakovich, Y. (2020) Long-range coupling of individual quantum dots with plasmonic nanoparticles in a thin-film hybrid material. In: Andrews, D.L., Bain, A.J., Kauranen, M., Nunzi, J.-M., eds. Nanophotonics VIII. Proceedings of SPIE, 11345, 113451D.
9. Krivenkov, V., Samokhvalov, P., Dyagileva, D., Nabiev, I. (2020) Absolute two-photon absorption cross-sections of single-exciton states in semiconductor nanocrystals. In: Andrews, D.L., Bain, A.J., Kauranen, M., Nunzi, J.-M., eds. Nanophotonics VIII. Proceedings of SPIE, 11345, 113451S.
8. Alexandrov, A., Zvaigzne, M., Lypenko, D., Nabiev, I., Samokhvalov, P. (2020). Al-, Ga-, Mg-, or Li-doped zinc oxide nanoparticles as electron transport layers for quantum dot light-emitting diodes. Scientific Reports, 10, 7496. IF=4.997 | Q1.
7. Nifontova, G., Ramos-Gomes, F., Alves, F., Nabiev, I., Sukhanova, A. (2020) Stimulus-sensitive theranostic delivery systems based on microcapsules encoded with quantum dots and magnetic nanoparticles. In: A. Fontes, B.S. Santos, eds. Quantum Dots: Applications in Biology (Methods in Molecular Biology, 2135). Humana Press, 3rd edition, chapter 11, 199–212.
6. Tsoy, T., Karaulov, A., Nabiev, I., Sukhanova, A. (2020) Multiplexed detection of cancer serum antigens with a quantum dot-based lab-on-bead system. In: A. Fontes, B.S. Santos, eds. Quantum Dots: Applications in Biology (Methods in Molecular Biology, 2135). Humana Press, 3rd edition, chapter 13, 225–236.
5. Ayadi, N., Lafont, F., Charlier, C., Benhelli-Mokrani, H., Sokolov, P., Sukhanova, A., Fleury, F., Nabiev, I. (2020) Comparative advantages and limitations of quantum dots in protein array applications. In: A. Fontes, B.S. Santos, eds. Quantum Dots: Applications in Biology (Methods in Molecular Biology, 2135). Humana Press, 3rd edition, chapter 16, 259–274.
4. Kryukova, I., Dovzhenko, D.S., Rakovich, Yu.P., Nabiev, I.R. (2020) Enhancement of the photoluminescence of semiconductor nanocrystals in transfer-printed microcavities based on freestanding porous silicon photonic crystals. Journal of Physics: Conference Series, 1439, 012018.
3. Kryukova, I., Dovzhenko, D., Rakovich, Yu., Nabiev, I. (2020) Enhancement of the quantum dot photoluminescence using transfer-printed porous silicon microcavities. Journal of Physics: Conference Series, 1461, 012076.
2. Krivenkov, V., Samokhvalov, P.S., Dyagileva, D., Karaulov, A., Nabiev, I.R. (2020) Determination of the single-exciton two-photon absorption cross-sections of semiconductor nanocrystals through the measurement of saturation of their two-photon-excited photoluminescence. ACS Photonics, 7 (3), 831–836. IF=7.077 | Q1.
1. Kage, D., Katrin Hoffmann, K., Nifontova, G., Krivenkov, V., Sukhanova, A., Nabiev, I., Resch-Genger, U. (2020) Tempo-spectral multiplexing in flow cytometry with lifetime detection using QD-encoded polymer beads. Scientific Reports, 10, 653. IF=4.997 | Q1.